Characterization of the structure, function, and mechanism of B2 RNA, an ncRNA repressor of RNA polymerase II transcription.
نویسندگان
چکیده
We previously found that the SINE-encoded mouse B2 RNA binds RNA polymerase II and represses mRNA transcription during the cellular heat-shock response. In vitro B2 RNA assembles into preinitiation complexes on promoter DNA via its interaction with the polymerase, thus rendering the complexes inactive. With the goal of understanding which regions of B2 RNA are important for high-affinity binding to RNA polymerase II and repression of transcription, we performed a structural and deletion analysis of a 178 nucleotide (nt) B2 RNA. We describe an experimentally derived secondary structure model for B2 RNA, and show that RNA polymerase II protects a specific region from RNase digestion. Deletion studies revealed that a 51-nt region of B2 RNA is sufficient for high-affinity binding to RNA polymerase II, association with preinitiation complexes, and repression of transcription in vitro, the latter of which involves a large predominately single-stranded region within the RNA. In addition, this piece of B2 RNA blocked the polymerase from properly associating with template DNA during the assembly of elongation complexes. Further deletion revealed that a 33-nt piece of B2 RNA binds RNA polymerase II, associates with preinitiation complexes, but cannot repress transcription. These results support a model in which RNA polymerase II contains a high-affinity ncRNA docking site to which a distinct region of B2 RNA binds, thereby allowing another region of the RNA to repress transcription. Moreover, the mechanism of transcriptional repression by B2 RNA likely involves disrupting critical contacts between RNA polymerase II and the promoter DNA.
منابع مشابه
Repression of RNA Polymerase II Transcription by B2 RNA Depends on a Specific Pattern of Structural Regions in the RNA
B2 RNA is a mouse non-coding RNA that binds directly to RNA polymerase II (Pol II) and represses transcription by disrupting critical interactions between the polymerase and promoter DNA. How the structural regions within B2 RNA work together to mediate transcriptional repression is not well understood. To address this question, we systematically deleted structural regions from B2 RNA and deter...
متن کاملStruggling to let go: a non-coding RNA directs its own extension and destruction.
In addition to its role in DNA-dependent transcription, RNA polymerase II (Pol II) possesses RNA-dependent RNA polymerase (RdRP) activity (Lehmann et al, 2007). In a study published in this issue of The EMBO Journal, Wagner et al (2013) report the first native cellular function of the RdRP activity of Pol II. The authors find that a mammalian non-coding RNA (ncRNA) can serve as a template for i...
متن کاملDampening DNA binding: a common mechanism of transcriptional repression for both ncRNAs and protein domains.
With eukaryotic non-coding RNAs (ncRNAs) now established as critical regulators of cellular transcription, the true diversity with which they can elicit biological effects is beginning to be appreciated. Two ncRNAs, mouse B2 RNA and human Alu RNA, have been found to repress mRNA transcription in response to heat shock. They do so by binding directly to RNA polymerase II, assembling into complex...
متن کاملIn silico Analysis and Molecular Modeling of RNA Polymerase, Sigma S (RpoS) Protein in Pseudomonas aeruginosa PAO1
Background: Sigma factors are proteins that regulate transcription in bacteria. Sigma factors can be activated in response to different environmental conditions. The rpoS (RNA polymerase, sigma S) gene encodes sigma-38 (σ38, or RpoS), a 37.8 kDa protein in Pseudomonas aeruginosa (P. aeruginosa) strains. RpoS is a central regulator of the general stress response and operates in both retroa...
متن کاملElongation factor SII-dependent transcription by RNA polymerase II through a sequence-specific DNA-binding protein.
In eukaryotes the genetic material is contained within a coiled, protein-coated structure known as chromatin. RNA polymerases must recognize specific nucleoprotein assemblies and maintain contact with the underlying DNA duplex for many thousands of base pairs. Template-bound lac operon repressor from Escherichia coli arrests RNA polymerase II in vitro and in vivo [Kuhn, A., Bartsch, I. & Grummt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- RNA
دوره 13 4 شماره
صفحات -
تاریخ انتشار 2007